* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) f#(i(x),y) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) f#(i(x),y) -> c_6() - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) f#(i(x),y) -> c_6() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) f#(i(x),y) -> c_6() - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,4,6} by application of Pre({1,2,3,4,6}) = {5}. Here rules are labelled as follows: 1: f#(x,0()) -> c_1() 2: f#(0(),y) -> c_2() 3: f#(1(),g(x,y)) -> c_3() 4: f#(2(),g(x,y)) -> c_4() 5: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) 6: f#(i(x),y) -> c_6() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) - Weak DPs: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(i(x),y) -> c_6() - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) -->_2 f#(i(x),y) -> c_6():6 -->_1 f#(i(x),y) -> c_6():6 -->_2 f#(2(),g(x,y)) -> c_4():5 -->_1 f#(2(),g(x,y)) -> c_4():5 -->_2 f#(1(),g(x,y)) -> c_3():4 -->_1 f#(1(),g(x,y)) -> c_3():4 -->_2 f#(0(),y) -> c_2():3 -->_1 f#(0(),y) -> c_2():3 -->_2 f#(x,0()) -> c_1():2 -->_1 f#(x,0()) -> c_1():2 -->_2 f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)):1 -->_1 f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)):1 2:W:f#(x,0()) -> c_1() 3:W:f#(0(),y) -> c_2() 4:W:f#(1(),g(x,y)) -> c_3() 5:W:f#(2(),g(x,y)) -> c_4() 6:W:f#(i(x),y) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: f#(x,0()) -> c_1() 3: f#(0(),y) -> c_2() 4: f#(1(),g(x,y)) -> c_3() 5: f#(2(),g(x,y)) -> c_4() 6: f#(i(x),y) -> c_6() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) The strictly oriented rules are moved into the weak component. ** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1,2} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(0) = [2] p(1) = [8] p(2) = [0] p(f) = [1] x2 + [2] p(g) = [1] x1 + [1] x2 + [4] p(i) = [0] p(f#) = [4] x1 + [0] p(c_1) = [0] p(c_2) = [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] x1 + [1] x2 + [6] p(c_6) = [1] Following rules are strictly oriented: f#(g(x,y),z) = [4] x + [4] y + [16] > [4] x + [4] y + [6] = c_5(f#(x,z),f#(y,z)) Following rules are (at-least) weakly oriented: ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) -->_2 f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)):1 -->_1 f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(g(x,y),z) -> c_5(f#(x,z),f#(y,z)) ** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))